Article 3118

Title of the article



Sharmin Valentin Gennad'evich, Candidate of physical and mathematical sciences, associate professor, sub-department of algebra and mathematical logic, Tyumen State University (6 Volodarskogo street, Tyumen, Russia),
Sharmin Dmitriy Valentinovich, Candidate of pedagogical sciences, associate professor, sub-department of mathematics and informatics, Tyumen State University (6 Volodarskogo street, Tyumen, Russia),

Index UDK





Background. The study of the properties of surfaces in various spaces is one of the main problems of differential geometry. Surfaces in Euclidean space, whose codimension is greater than one, are characterized by some new properties that do not have hypersurfaces in this space. In particular, two-dimensional surfaces in fourdimensional Euclidean space have torsion coefficients. This article is devoted to the study of the properties of a spherical image of a two-dimensional surface with a system normals without torsion in four-dimensional Euclidean space.
Materials and methods. The methods of differential geometry developed by E. Cartan, K. Sh. Ramazanova, and A. I. Firsov to study surfaces, whose codimension is greater than one.
Results. We have proved some properties of the spherical image of a twodimensional surface with a system of normals without torsion, and also we have obtained sufficient conditions that this image is a three-dimensional surface.
Conclusions. We have investigated the structure of the spherical image of a twodimensional surface with a system of normals without torsion, under certain additional conditions.

Key words

Euclidean space, two-dimensional surface, spherical mapping, Gaussian curvature, coefficients of torsion of the surface

 Download PDF

1. Vygodskiy M. Ya. Differentsial'naya geometriya [Differential geometry]. Moscow; Leningrad: Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoy literatury, 1949, 512 p.
2. Bakel'man I. Ya., Verner A. L., Kantor B. E. Vvedenie v differentsial'nuyu geometriyu «v tselom» [Introduction to differential geometry "in general"]. Moscow: Nauka, 1973, 440 p.
3. Fomenko V. T. Matematicheskie zametki [Mathematical notes]. 2004, vol. 75, no. 5, pp. 744–756.
4. Bodrenko I. I. Vestnik Volgogradskogo gosudarstvennogo universiteta. Ser. 1 [Bulletin of Volgograd State University. Series 1]. 2013, no. 2, pp. 13–17.
5. Esin V. A. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Ser.: Mat. Fiz. [Proceedings of BelSU. Mathematics. Physics]. 2008, no. 15, pp. 55–57.
6. Sharmin V. G. Issledovaniya po teorii poverkhnostey postoyannoy krivizny [Research on the theory of surfaces of constant curvature]. Leningrad: Izd-vo LGPI im. A. I. Gertsena, 1987, pp. 98–100.
7. Sharmina T. N., Sharmin V. G. Al'manakh sovremennoy nauki i obrazovaniya [Almanac of modern science and education]. 2010, no. 1 (32), part 1, pp. 33–36.
8. Sharmin V. G., Sharmina T. N. Vestnik Buryatskogo universiteta. Matematika, informatika [Bulletin of Buryat University. Mathematics, computer science]. 2017, no. 1, pp. 3–9.
9. Firsov A. I. Vestnik Moskovskogo universiteta. Ser. 1: Mekhanika. Matematika [Bulletin of Moscow State University. Mechanics. Mathematics]. 1976, no. 2, pp. 37–42.
10. Skhouten I. A., Stroyk D. Ya. Vvedenie v novye metody differentsial'noy geometrii [Introduction into new methods of differential geometry]. Moscow: GIIL, 1948, vol. 2, 348 p.
11. Ramazanova K. Sh. Izvestiya vuzov. Matematika [University proceedings. Mathematics]. 1966, no. 6, pp. 137–143.
12. Kartan E. Rimanova geometriya v ortogonal'nom repere [Riemannian geometry in the orthogonal frame]. Moscow: Izd-vo MGU, 1960, 307 p.


Дата создания: 13.06.2018 13:34
Дата обновления: 28.08.2018 13:43